RSD problem Teaser of a coming talk

An Algebraic Attack on Rank Metric Code-Based Cryptosystems

Maxime Bros

Journées Codage & Cryptographie 2020

Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger, Olivier Ruatta, Jean-Pierre Tillich

November, 2020

A simple problem in linear algebra

Let k < n be integers, $H \in \mathbb{F}_q^{(n-k) \times n}$, $e \in \mathbb{F}_q^{n \times 1}$, and $s \in \mathbb{F}_q^{(n-k) \times 1}$.

A simple problem in linear algebra

Let k < n be integers, $H \in \mathbb{F}_q^{(n-k) \times n}$, $e \in \mathbb{F}_q^{n \times 1}$, and $s \in \mathbb{F}_q^{(n-k) \times 1}$.

One easily finds one or several solutions for e

A simple problem in linear algebra

Let k < n be integers, $H \in \mathbb{F}_q^{(n-k) \times n}$, $e \in \mathbb{F}_q^{n \times 1}$, and $s \in \mathbb{F}_q^{(n-k) \times 1}$.

- One easily finds one or several solutions for e
- Therefore, one can not control the weight of e for a given metric !

Rank Syndrome Decoding Problem (RSD)

Definition (Syndrome Decoding (SD) Problem - computational version)

Input: a parity-check matrix $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ of a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $s \in \mathbb{F}_{q^m}^{n-k}$. **Output**: a vector $e \in \mathbb{F}_{q^m}^n$ such that $He^T = s^T$ and $w(e) \leq r$.

Definition (Decoding Problem - computational version)

Input : a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $y \in \mathbb{F}_{q^m}^n$. Output : $c \in C$ such that $w(y - c) = w(e) \leq r$.

Rank Syndrome Decoding Problem (RSD)

Definition (Syndrome Decoding (SD) Problem - computational version)

Input: a parity-check matrix $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ of a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $s \in \mathbb{F}_{q^m}^{n-k}$. **Output**: a vector $e \in \mathbb{F}_{q^m}^n$ such that $He^T = s^T$ and $w(e) \leq r$.

Definition (Decoding Problem - computational version)

Input: a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $y \in \mathbb{F}_{q^m}^n$. **Output**: $c \in C$ such that $w(y - c) = w(e) \leq r$.

These 2 problems are equivalent.

Rank Syndrome Decoding Problem (RSD)

Definition (Syndrome Decoding (SD) Problem - computational version)

Input: a parity-check matrix $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ of a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $s \in \mathbb{F}_{q^m}^{n-k}$. **Output**: a vector $e \in \mathbb{F}_{q^m}^n$ such that $He^T = s^T$ and $w(e) \leq r$.

Definition (Decoding Problem - computational version)

Input : a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $y \in \mathbb{F}_{q^m}^n$. Output : $c \in C$ such that $w(y - c) = w(e) \leq r$.

These 2 problems are equivalent.

- Euclidian metric \implies lattice-based cryptography
- Hamming metric \implies code-based cryptography
- Rank metric \implies rank-based cryptography
- SD proven NP-complete for the Hamming metric in 1978 (Berlekamp and al.)

Rank Syndrome Decoding Problem (RSD)

Definition (Syndrome Decoding (SD) Problem - computational version)

Input: a parity-check matrix $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ of a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $s \in \mathbb{F}_{q^m}^{n-k}$. **Output**: a vector $e \in \mathbb{F}_{q^m}^n$ such that $He^T = s^T$ and $w(e) \leq r$.

Definition (Decoding Problem - computational version)

Input : a code C (i.e. a subspace of $\mathbb{F}_{q^m}^n$), an integer $r \in \mathbb{N}$ and a vector $y \in \mathbb{F}_{q^m}^n$. Output : $c \in C$ such that $w(y - c) = w(e) \leq r$.

These 2 problems are equivalent.

- Euclidian metric \implies lattice-based cryptography
- Hamming metric \implies code-based cryptography
- Rank metric \implies rank-based cryptography
- SD proven NP-complete for the Hamming metric in 1978 (Berlekamp and al.)
- Rank-SD (RSD) strongly believed to be NP-complete as well
- Randomized reduction from an NP-complete problem in 2017 (Gaborit, Zémor)

Rank metric with an example

Let $B = \{1, b_2, b_3, b_4\}$ be a basis of \mathbb{F}_{2^4} seen as an \mathbb{F}_2 -vector space.

$$\mathbf{v} := (\alpha^9 \quad \mathbf{1} \quad \alpha^9 \quad \mathbf{0} \quad \alpha^7) \in (\mathbb{F}_{2^4})^5$$

Rank metric with an example

Let $B = \{1, b_2, b_3, b_4\}$ be a basis of \mathbb{F}_{2^4} seen as an \mathbb{F}_2 -vector space.

$$v := \left(\begin{array}{cccc} \alpha^9 & 1 & \alpha^9 & 0 & \alpha^7 \end{array} \right) \in (\mathbb{F}_{2^4})^5$$
$$M := \begin{array}{cccc} 1\\ b_2\\ b_3\\ b_4 \end{array} \left(\begin{array}{cccc} 0 & 1 & 0 & 0 & 1\\ 1 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 \end{array} \right) \in (\mathbb{F}_2)^{4 \times 5}$$

Rank metric with an example

Let $B = \{1, b_2, b_3, b_4\}$ be a basis of \mathbb{F}_{2^4} seen as an \mathbb{F}_2 -vector space.

$$v := \left(\begin{array}{cccc} \alpha^9 & 1 & \alpha^9 & 0 & \alpha^7 \end{array} \right) \in (\mathbb{F}_{2^4})^5$$
$$M := \begin{array}{cccc} 1\\ b_2\\ b_3\\ b_4 \end{array} \left(\begin{array}{cccc} 0 & 1 & 0 & 0 & 1\\ 1 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 \end{array} \right) \in (\mathbb{F}_2)^{4 \times 5}$$

 $\operatorname{Rank}(v) := \operatorname{Rank}(M) = 2.$

RSD problem Our attack

Teaser of a coming tal

Why is the RSD problem important ?

Why is the RSD problem important ?

• **RSD** is at the core of Rank-based cryptosystems.

Why is the RSD problem important ?

- **RSD** is at the core of Rank-based cryptosystems.
- 2 Rank-based cryptosystems (ROLLO and RQC) made it to the 2nd Round of the celebrated NIST Post-Quantum Standardization Process.

Why is the RSD problem important ?

- **RSD** is at the core of Rank-based cryptosystems.
- 2 Rank-based cryptosystems (ROLLO and RQC) made it to the 2nd Round of the celebrated NIST Post-Quantum Standardization Process.

• They did not reach the Third Round... because of our attacks !

Why is the RSD problem important ?

- **RSD** is at the core of Rank-based cryptosystems.
- 2 Rank-based cryptosystems (ROLLO and RQC) made it to the 2nd Round of the celebrated NIST Post-Quantum Standardization Process.

- They did not reach the Third Round... because of our attacks !
- Nevertheless, in their report "NISTIR 8309" on the Second Round, NIST emphasized on the importance to keep studying Rank-based cryptography :

"Despite the development of algebraic attacks, NIST believes rank-based cryptography should continue to be researched. The rank metric cryptosystems offer a nice alternative to traditional hamming metric codes with comparable bandwidth."

Algebraic attack

- Algebraic Attack : one models a problem with a system of equations and solve it.
- Classic approach : Gröbner basis (GB) computation

Algebraic attack

- Algebraic Attack : one models a problem with a system of equations and solve it.
- Classic approach : Gröbner basis (GB) computation
- The more equations, the easier.

Complexity of GB algorithms

$$\begin{split} \{f_1, \dots, f_m\} \in \mathbb{F}_q[x_1, \dots, x_n] \\ \begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) = 0 \end{cases} \end{split}$$

Complexity of GB algorithms

Complexity of GB algorithms

The core of our attack

The core of our attack

The additional equations

- Let G ∈ F^{(k+1)×n}_{qm} be the generator matrix of a code C augmented by a received word y = c + e where c ∈ C and Rank (e) ≤ r.
- The original modeling by Ourivski-Johansson is

$$(1, \alpha, \alpha^2, \dots, \alpha^{m-1})S(C_2 - C_1R) = 0, \quad \text{over } \mathbb{F}_{q^m} \text{ with solutions in } \mathbb{F}_{q}.$$
(1)
it comes from writting *e* as a product of two matrices *S* and

(it comes from writting *e* as a product of two matrices $S = C := (C_1|C_2)$ with entries in the ground field \mathbb{F}_q)

• Our additional equations are all the maximal minors of the following matrix :

$$(C_2 - C_1 R).$$

- The new equations belong to the ideal generated by equations in (1).
- We found them using the **fundamental results** by Faugere and al. (2011) and Verbel and al. (2019). It is based on the use of **kernel of jacobian matrices** associated to the system.
- With those new equations, d_{solv} goes down to r or r+1 for most of the cryptographic parameters.

Our attack

Cryptosystem	Parameters (m, n, k, r)	Our attack	Previous
Loidreau	(128, 120, 80, 4)	96.3	256
ROLLO-I-128	(79, 94, 47, 5)	114.9	128
ROLLO-I-192	(89, 106, 53, 6)	142.2	192
ROLLO-I-256	(113, 134, 67, 7)	195.3	256
ROLLO-II-128	(83, 298, 149, 5)	132.3	128
ROLLO-II-192	(107, 302, 151, 6)	161.5	192
ROLLO-II-256	(127, 314, 157, 7)	215.4	256
ROLLO-III-128	(101, 94, 47, 5)	117.1	128
ROLLO-III-192	(107, 118, 59, 6)	145.7	192
ROLLO-III-256	(131, 134, 67, 7)	197.5	256
RQC-I	(97, 134, 67, 5)	121.1	128
RQC-II	(107, 202, 101, 6)	154.2	192
RQC-III	(137, 262, 131, 7)	211.9	256

To be continued...

We improved our algebraic attack against RSD in a new paper :

"Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems".

To be continued...

We improved our algebraic attack against RSD in a new paper :

"Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems".

- New modeling based on the previous one together with equations coming from a new modeling to solve the **MinRank Problem**.
- Improvements of algebraic attacks against MinRank as well.
- No more Gröbner basis !
- Joint work with : Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel.

To be continued...

We improved our algebraic attack against RSD in a new paper :

"Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems".

- New modeling based on the previous one together with equations coming from a new modeling to solve the **MinRank Problem**.
- Improvements of algebraic attacks against MinRank as well.
- No more Gröbner basis !
- Joint work with : Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel.

I will present this work with more details during a 1 hour talk at the seminar of the Computer Algebra Team of XLIM, University of Limoges at

10h30 a.m, December 3rd, 2020.

You are very welcome to attend it online, contact me at:

maxime.bros@unilim.fr